The Central Molecular Zone (CMZ) at the heart of the Milky Way holds a lot of gas. It contains about 60 million solar masses of molecular gas in complexes of giant molecular clouds (GMCs), structures where stars usually form. Because of the presence of Sag. A*, the Milky Way’s supermassive black hole (SMBH), the CMZ is an extreme environment. The gas in the CMZ is ten times more dense, turbulent, and heated than gas elsewhere in the galaxy. How do star-forming GMCs behave in such an extreme environment? Researchers have found a novel way to study two of the GMCs in the CMZ. The clouds are named “Sticks” and “Stones” and astronomers have used decades of X-ray observations from the Chandra X-ray Observatory to probe the 3D structures of the pair of clouds. University of Connecticut Physics Researcher Danya Alboslani and postdoctoral researcher Dr. Samantha Brunker are both with the Milky Way Laboratory at the University of Connecticut. They’ve produced two manuscripts presenting th...
Researchers have discovered how to make a new kind of metamaterial reconfigure itself without tangling itself up in knots, opening up the possibility of a broad array of space applications. Metamaterials are a hot topic in engineering. These are materials inspired from biological systems. Many living structures start from simple, repeatable patterns that then grow into large, complex structures. The resulting structures can then have properties that the small subcomponents don’t. For example, individual bone cells or coral polyp skeletons aren’t very strong, but when they work together they can support huge animals or gigantic underwater colonies. One promising kind of metamaterial is known as a Totimorphic lattice. This lattice starts from a triangular shaped structure. On one side is a fixed beam with a ball joint in the center. An arm attaches to that ball joint, and the other end of the arm is attached to the ends of the fixed beam with two springs. Many of these shapes attached...