Skip to main content

Watch a Baby Planet Carve Out a Home for Itself

Astronomers have detected a small, compact source embedded in a gap in the disk surrounding a young star. They believe it is a baby planet in the process of growing.

Protoplanetary systems offer rare glimpses into the evolutionary history of solar systems like our own. We know already from extensive observations and theory that solar systems start out as vast clouds of interstellar gas that then compress and begin to rotate. Eventually that rotating gas flattens into a disk and planets begin forming around a central core.

While we have a very good understanding of the general picture, we do not understand the details of how planets form, especially the differences between inner rocky planets and outer giant worlds. So the more direct observations we can make of protoplanetary systems the better our understanding can be.

Unfortunately the process of planet formation plays out over millions of years, so it’s not like we can just stare at one system and watch it evolve before our very eyes.

Or can we?

A team of astronomers have released a series of observations going back almost a decade of the system called HD169142. This system has a very fortunate alignment, as it appears face on from our field of view, so we get a complete view of the entire system. The system itself is a disk in the process of forming planets.

A planet carves out a gap in a protoplanetary disk in the HD 169142 system. (Image credit: Hammond et al.)

Previous observations had already identified a ring-like gap in the disk sitting about 37 AU from the central star. Follow-up observations discovered a small object embedded in that gap. The team performed repeated observations over several years and found that the small, compact object was moving.

The team argues that they are watching a baby planet move around a star. They believe it’s a planet because the motion of the bright source fits with the typical Keplerian motion of a planet around a star. Second, the edges of the gap are very bright, which is expected from theoretical simulations where a planet has carved out a gap in the disk from its gravity.

Lastly, the team has observed spiral-shaped structures in the disk emanating away from the gap. This is also expected from theoretical calculations based on the gravitational influence of the planet on the rest of the disk.

They believe that this protoplanet is roughly the mass of Jupiter and is still in the process of forming. It has already accumulated a lot of gas and cleared that gas out from its ring, and more gas is likely funneling onto the planet from the surrounding disk. We do not yet have the observational capabilities to determine if other planets are forming within the disk, but continued studies of this baby system can shed a light on how planets like our own Jupiter form.

The post Watch a Baby Planet Carve Out a Home for Itself appeared first on Universe Today.



from Universe Today https://ift.tt/ejh5Aba
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

Could We Launch a Mission to Chase Down Interstellar Comet 3I/ATLAS?

It’s a tantalizing prospect. Since 2017, three interstellar objects have been spotted passing through our solar system: 1I/ʻOumuamua, 2I/Borisov… and just this month, 3I/ATLAS. Discovered on July 1st by the Asteroid Terrestrial-impact Last Alert Survey, 3I/ATLAS is zipping through the inner solar system in the last half of 2025. Certainly, all assets on the ground and in space will be turned towards 3I/ATLAS over the next few frenzied months, to glean what we can… but what would 3I/ATLAS look like up close? Can we even consider chasing down such a speedy visitor? from Universe Today https://ift.tt/HAho7wC via IFTTT