Skip to main content

One Spacecraft Could Visit All of Saturn's Inner Large Moons

If you’ve ever played Kerbal Space Program, you know how difficult it can be to get your spacecraft into the orbit you want. It’s even more difficult in real life. This is why it’s pretty impressive to see a proposal to study all of Saturn’s large inner moons in one go.

At a broad level, orbits are pretty simple. Planets and moons are basically ellipses. Once set into motion, spacecraft generally follow an elliptical or parabolic path, so it’s just a matter of lining up your spacecraft’s orbit with your destination and point of origin. You can do the calculations by hand if you know the math. Several early science fiction authors such as Robert Heinlein and Hal Clement did just that to ensure their space-travel stories were accurate.

But these types of simple calculations only determine fly-by paths, and they don’t take into account energy-saving tricks such as gravitational slingshots. The energy demands of getting a spacecraft to the outer solar system are so high that even the early missions to Jupiter and beyond relied on gravitational assists, which are difficult to calculate. And as we’ve seen from missions such as Juno and Cassini, it’s extremely useful to put a spacecraft in orbit around a planet so we have plenty of time to gather data. Ideally, for something such as a mission to Saturn, you’d want to reach the ringed planet in a reasonable time, then move into a series of orbits around the planet that makes several flybys of interesting moons, but that’s a big ask for a mission.

One of the challenges has to do with orbital energy. To reach Saturn quickly, you’d need to build up a great deal of speed. To get into orbit you have to take much of that speed away. This is particularly challenging if you want your spacecraft to orbit deep in the planet’s gravitational well. For the Cassini mission, the team reached a compromise using orbits that dipped close to the inner moons of Saturn from time to time. This was fine because a main focus of Cassini was the moon Titan, which is relatively far away from Saturn.

Orbital transfer between two of Saturn’s moons, Dione and Tethys. Credit: Fantino, E., et al

For a return mission to Saturn, astronomers would really like to get a good view of Enceladus. We know it has plenty of liquid water, and it’s an excellent candidate for life. But it’s deep within Saturn’s gravitational well, with an orbital radius only one-fifth that of Titan. At the moment, the strongest proposed mission is the Enceladus Orbilander, which would orbit the moon for about 18 months. But this would prevent the mission from deeply studying other Saturnian moons.

This is where this new proposal comes in. Rather than simply focusing on Enceladus, why not spend time around all the major moons of Saturn? To achieve this, the team proposes a complex set of orbits that relies on an electric propulsion engine. Also known as an ion thruster, such an engine could provide a tiny amount of thrust over extended times. The idea is to gradually shift orbits rather than shifting orbits in a single go. These dynamic orbits are really difficult to calculate, but they are extremely energy efficient and can be adjusted over time.

In their proposal, the team shows how electric propulsion could power a mission to visit not only Enceladus and Titan, but also Dione, Tethys, and Mimas. Depending on priorities, the mission could be put in orbit around each of these moons, making several close approaches to each world. Depending on the length of the mission, the electric propulsion could be either solar or nuclear powered.

This initial proposal is just a proof of concept, but it shows that the next mission to Saturn doesn’t have to choose between Either Enceladus or another moon. It’s possible to take a grand tour of the Saturnian system if only we can be steely-eyed about the orbital paths we choose.

Reference: Fantino, E., et al. “A novel trajectory concept for a mission to the Inner Large Moons of Saturn.” arXiv preprint arXiv:2305.17548 (2023).

The post One Spacecraft Could Visit All of Saturn's Inner Large Moons appeared first on Universe Today.



from Universe Today https://ift.tt/mFx2vGQ
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...