Skip to main content

Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership

Two of the most important telescopes being constructed at the moment are Vera C. Rubin and Nancy Grace Roman. Each has the capability of transforming our understanding of the universe, but as a recent paper on the arxiv shows, they will be even more transformative when they work together.

Originally known as the Large Synoptic Survey Telescope (LSST), Rubin Observatory will be a ground-based sky survey telescope. It will map the entire heavens visible from its location every few nights, giving us an unprecedented view of transient objects such as supernovae, variable stars, and stellar flares. Most survey telescopes sacrifice resolution for speed, but Rubin will use a new optical mirror design that will capture high-resolution images with nearly 50 times the apparent area of the Moon.

The Roman telescope on the other hand will be a space-based observatory. Originally named the Wide-Field Infrared Survey Telescope (WFIRST), Roman will study dark energy and discover new exoplanets through a process known as microlensing. Like Rubin, the Roman telescope will have a wide view of the sky, covering roughly the area of the Moon in a single image. In comparison, a single Hubble Space telescope is only about a fiftieth of a Moon-width. Roman will also observe the sky at even higher resolutions than Rubin, in both visible and infrared.

This new paper outlines how Rubin and Roman could be used together for specific research. For example, variable stars known as Cepheids vary in brightness in proportion to their overall luminosity. They are used as part of the cosmic distance ladder. As Rubin sky surveys find Cepheids, Roman can be used to determine their distance and motion, thus making Cepheid distance measurements more accurate. As Roman discovers exoplanets, Rubin can add spectroscopic observations to better understand things such as the metallicity of exoplanet stars. And there will be unexpected transient events where having two powerful telescopes will be extremely useful in characterizing events.

Vera Rubin (left) and Nancy Roman (right) together in 2009. Credit: NASA, Jay Freidlander

The astronomers for which these telescopes are named never directly collaborated in their research. Vera Rubin focused on the rotational motion of galaxies. She identified the galactic rotation problem, where outer stars have velocities similar to those of central stars, which was the foundational evidence for dark matter. Nancy Roman studied the spectra and motion of stars and discovered that stars of similar mass and type could have vastly different ages, which laid the groundwork for our understanding of stellar and galactic evolution. She also worked for NASA and was deeply involved in the development of the Hubble Space Telescope.

Both the Rubin and Roman telescopes have a heavy mantle to carry in their names. They will continue the work these women started, taking our understanding beyond the shores of knowledge two astronomers gave us. And by collaborating in spirit and in name, Vera C. Rubin and Nancy Grace Roman will inspire astronomers all across the world to make amazing discoveries of their own.

Reference: Street, R.A., et al. “Maximizing science return by coordinating the survey strategies of Roman with Rubin, and other major facilities.” arxiv preprint arXiv:2306.13792 (2023).

The post Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership appeared first on Universe Today.



from Universe Today https://ift.tt/aix9fT3
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...