Skip to main content

It's Time for a Gravitational Wave Observatory in the Southern Hemisphere

What’s true for optical astronomy is also true for gravitational wave astronomy: the more observatories you have, the better your view of the sky. This is why the list of active gravitational wave observatories is growing. But so far they are all in the Northern Hemisphere. As a recent article on the arXiv points out, that means we are missing out on a good number of gravitational events.

To its credit, gravitational wave astronomy is still in its youth. In the early days of large optical telescopes, there was also a northern bias to their locations. Part of this was based on the technical challenges of constructing telescopes in the global south, but there was also a cultural bias that is still with us today. We would do well to be mindful of this bias and try to correct it.

But this latest work shows that building a gravitational wave observatory in the southern hemisphere wouldn’t simply be an act of broadening global participation, it would gain us significantly more observational data. This is particularly true given that the dense central region of our galaxy is in the Southern sky.

As a basic case, the authors consider adding a LIGO-like observatory in Australia. Currently, there are two LIGO detectors in the United States and the Virgo detector in Italy. Together they detect around 3 events a year, though that number is rising as techniques improve. The addition of an Australian detector would double that count to more than 6 events. With three source detections, we could triangulate the event in the sky, allowing optical telescopes to gather data for multi-messenger astronomy.

Sensitivity of Cosmic Explorer and current observatories. Credit: Evan D. Hall

Of course, by the time an observatory can be constructed in the global south, gravitational wave detectors will be significantly improved. So the authors look at a more realistic case of building a third-generation advanced detector in Australia. This could operate in tandem with an American-based Cosmic Explorer and a European-based Einstein Telescope. Where LIGO uses detector arms 4 kilometers long, these new detectors would use 20-kilometer arms or even 40-kilometer arms. They will be able to detect gravitational sources we can currently only dream of seeing.

In this case, adding an Australian detector would not significantly increase the number of observed events, raising the number from an estimated 40 a year to 44 a year. But as you can imagine, these new observatories will be so cutting edge that downtimes will be inevitable. In this case, an Australian observatory would give us a significant edge. With only Einstein and Cosmic Explorer, if one goes down for maintenance, the detection rate drops to a few a year. But with two observatories still active, the rate stays around 40 a year.

As we get better at gravitational wave astronomy, there will eventually be detectors all over the world, and even in space. Gravitational wave astronomy will come to the global south. But as this study shows, the time for that is sooner, not later.

Reference: Gardner, James W., et al. “Multi-messenger astronomy with a Southern-Hemisphere gravitational-wave observatory.arXiv preprint arXiv:2308.13103 (2023).

The post It's Time for a Gravitational Wave Observatory in the Southern Hemisphere appeared first on Universe Today.



from Universe Today https://ift.tt/veMuRlw
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT