Skip to main content

For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe

Ripples in a pond can be captivating on a nice sunny day as can ripples in the very fabric of space, although the latter are a little harder to observe.  Using the highly tuned Gaia probe, a team of astronomers propose that it might just be possible to detect gravitational waves through the disturbance they impart on the movement of asteroids in our Solar System!

In the teaser I said that gravitational waves were difficult to observe, largely because they are invisible and incredibly fast, travelling at the speed of light (approximately 300,000 km per second). Despite the challenge in observing them, the first waves were detected in 2015 using the Laser Interferometer Gravitational-Wave Observatory or LIGO for short. 

Image showing the 'arms' of the LIGO Observatory from above.
LIGO Observatory from above (Credit : LIGO Observatory)

Let’s go back a little first though. It was Einstein who first suggested that an event in the Universe that exhibited movement; perhaps two objects orbiting each other or a star exploding might generate ripples through space, stretching and squeezing anything in its path. These are the gravitational waves and that’s what LIGO detected eight years ago, supporting Einstein’s theory. 

Current observations of gravitational waves are limited to those in the 100 Hz frequency which are produced during the merger of compact binary stars.  Another technique uses Pulsar Timing Arrays (PTAs) to explore wave frequencies between 10 to 8 Hz.  The PTA method examines a known selection of millisecond pulsars across the Galaxy. Pulsars are the highly magnetised remains of a supermassive star that has gone supernova and emit  beams of radiation out of their magnetic poles. As the pulsar rotates and if its poles are aligned with Earth, we see a regular burst or pulse of radiation as the beam sweeps by.

Image of Pulsar PSR B1509-58 revealing Xray and Infrared emissions
Pulsar PSR B1509?58 – X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max (Credit : ASA/CXC/SAO (X-Ray); NASA/JPL-Caltech (Infrared))

A pulsars pulse is highly precise and they make fabulous timekeepers across the Universe.  PTA’s observe these pulsars and constantly review the pulse timings. If a gravitational wave passes through, then tiny yet observable differences in the arrival of the pulse will occur showing up as differences in the time signature. Measuring pulsar timings is an accurate way of detecting gravitational waves but it looks like Gaia wants in on the act.

Gaia is capable of making highly accurate astrometric measurements of an object’s position. The team suggest that using Gaia, then the position of stars or other more nearby objects may reveal the passage of a gravitational wave.

The paper goes on to state that Gaia might even be able to detect gravitational waves based on the effect they have on asteroids in our Solar System. It depends, on the wavelength of the gravitational waves which can range from the diameter of the Earth up to the distance between the Sun and Pluto, maybe even longer.  The researchers concentrated their study on waves of the order 1 million astronomical units and concluded that the could indeed be revealed by the disturbance in the movement of asteroids. 

 Source : Observing gravitational waves with solar system astrometry

The post For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe appeared first on Universe Today.



from Universe Today https://ift.tt/fvlT6r1
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...