Skip to main content

Why Quantum Mechanics Defies Physics

The full, weird story of the quantum world is much too large for a single article, but the period from 1905, when Einstein first published his solution to the photoelectric puzzle, to the 1960’s, when a complete, well-tested, rigorous, and insanely complicated quantum theory of the subatomic world finally emerged, is quite the story.

This quantum theory would come to provide, in its own way, its own complete and total revision of our understanding of light. In the quantum picture of the subatomic world, what we call the electromagnetic force is really the product of countless microscopic interactions, the work of indivisible photons, who interact in mysterious ways. As in, literally mysterious. The quantum framework provides no picture as to how subatomic interactions actually proceed. Rather, it merely gives us a mathematical toolset for calculating predictions. And so while we can only answer the question of how photons actually work with a beleaguered shrug, we are at least equipped with some predictive power, which helps assuage the pain of quantum incomprehensibility.

Doing the business of physics – that is, using mathematical models to make predictions to validate against experiment – is rather hard in quantum mechanics. And that’s because of the simple fact that quantum rules are not normal rules, and that in the subatomic realm all bets are off.

Interactions and processes at the subatomic level are not ruled by the predictability and reliability of macroscopic processes. In the macroscopic world, everything makes sense (largely because we’ve evolved to make sense of the world we live in). I can toss a ball enough times to a child that their brain can quickly pick up on the reliable pattern: the ball leaves my hand, the ball follows an arcing path, the ball moves forward and eventually falls to the ground. Sure, there are variations based on speed and angle and wind, but the basic gist of a tossed ball is the same, every single time.

Not so in the quantum world, where perfect prediction is impossible and reliable statements are lacking. At subatomic scales, probabilities rule the day – it’s impossible to say exactly what any given particle will do at any given moment. And this absence of predictability and reliability at first troubled, and then disgusted, Einstein, who would eventually leave the quantum world behind with nothing more than a regretful shake of his head at the misguided work of his colleagues. And so he continued his labors, attempting to find a unified approach to joining the two known forces of nature, electromagnetism and gravity, with an emphatically not quantum framework.

When two new forces were first proposed in the 1930’s to explain the deep workings of atomic nuclei – the strong and weak nuclear forces, respectively – this did not deter Einstein. Once electromagnetism and gravity were successfully united, it would not take much additional effort to work in new forces of nature. Meanwhile, his quantum-leaning contemporaries took to the new forces with gusto, eventually folding them into the quantum worldview and framework.

By the end of Einstein’s life, quantum mechanics could describe three forces of nature, while gravity stood alone, his general theory of relativity a monument to his intellect and creativity.

The post Why Quantum Mechanics Defies Physics appeared first on Universe Today.



from Universe Today https://ift.tt/p74n93j
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...