Skip to main content

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Our own Galaxy, the Milky Way is a spiral galaxy with a central nucleus and spiral arms emanating out from the centre. Our Solar System lies about 25,000 light years from the centre. Look at the galaxies in the sky though and you will see a real mix but generally they fall under the four main categories. Edwin Hubble tried to bring some structure to the different shapes by developing his galaxy classification scheme to articulate not only the shape but also the sub categories within them. 

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It has been known for some time that galaxies aren’t static. They move and they evolve and change. Spiral galaxies for example, as they age, they often develop a bar feature. The bar joins up the spiral arms instead of a nucleus connecting them and it is believed they are temporary, forming when a build of gas creates a burst of star formation. 

The existence of a bar in a spiral galaxy suggests that the galaxy is fairly stable. Understanding just how the bar feature forms is key to understanding the evolutionary process of the galaxy itself. All previous observations showed that the appearance of the bar significantly reduces from the nearby Universe to redshifts near a value of one. This tells us that the bar seemed to be a modern feature and not present in the early Universe. 

The barred spiral galaxy NGC 1300. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

In a new paper by lead author Zoe A Le Conte, observations from the more sensitive James Webb Space Telescope report that galaxies to greater redshift are studied for bar features. Data is used from the Cosmic Evolution Early Release Science Survey and the observations from the Public Release Imaging for Extragalactic Research studies. Only the galaxies that also appear in the Cosmic Assembly Near Infra Red Deep Extragalactic Legacy Survey are used giving a sample of 368 face on galaxies. 

The team visually searched through the 368 galaxy selection to classify and identify those with bars between redshifts 1 and 2 and then repeated the exercise for those between redshift 2 and 3. As expected, the fraction of bars reduced from around 17.8% between a red shift of 1 and 2 down to 13.8% at the greater red shift of 2 to 3. 

The study revealed that JWST’s infra-red sensitivity picked up twice as many barred-spiral galaxies than the HST’s more blue sensitive imaging platform. Le Conte and her team conclude that the evolution of bars in spiral galaxies began to appear at a much earlier epoch, around 11 billion years ago. 

Source : A JWST investigation into the bar fraction at redshifts 1 ? z ? 3

The post Galaxies Evolved Surprisingly Quickly in the Early Universe appeared first on Universe Today.



from Universe Today https://ift.tt/A6IWBRz
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...