Skip to main content

Slingshotting Around the Sun Would Make a Spacecraft the Faster Ever

NASA is very interested in developing a propulsion method to allow spacecraft to go faster. We’ve reported several times on different ideas to support that goal, and most of the more successful have utilized the Sun’s gravity well, typically by slingshotting around it, as is commonly done with Jupiter currently. But, there are still significant hurdles when doing so, not the least of which is the energy radiating from the Sun simply vaporizing anything that gets close enough to utilize a gravity assist. That’s the problem a project supported by NASA’s Institute for Advanced Concepts (NIAC) and run by Jason Benkoski, now of Lawrence Livermore National Laboratory, is trying to solve.

The project was awarded a NIAC Phase I grant in 2022, focused on combining two separate systems – a heat shield and a thermal propellant system. According to the project’s final report, combining those two technologies could allow a spacecraft to perform what is known as an Oberth maneuver around the Sun. In this orbital mechanics trick, a spacecraft uses the Sun’s gravity well to slingshot itself at high speeds in the direction it aims. It’s similar to the Sundiver technology discussed in other articles.

So, what makes this project unique? One thing is the heat shield – Dr. Benkoski and his team developed a material that is capable of withstanding up to 2700 K. While that is still not anywhere near the temperature of the Sun’s surface, which can reach up to 5800 K, its enough to get pretty close, and thereby unlock a spacecraft’s ability to use an Oberth maneuver in the first place. 

Image of the test set-up for the thermal shield.
Image of the test set-up for the thermal shield.
Credit – Benkoski et al.

Samples of the material with these thermal properties have already been produced. However, further research is needed to understand whether they’re cut out for space flight. And a heat shield alone isn’t enough to perform the maneuver – a spacecraft also must have a propulsion system that can withstand those temperatures. 

A solar thermal propulsion system could potentially do so. These systems use the Sun’s energy to pressurize their own propellant and then expel those propellants out to gain thrust, which is a necessary component of an Oberth maneuver. There are several different types of fuels that could work for such a system, and a large chunk of the research in the Phase I project looked at the different costs/benefits of each.

Hydrogen is one of the more common fuels considered for a solar thermal propulsion system. Though it is lightweight, it requires a bulky cryogenic system to store the hydrogen because it is heated to the point of being used as thrust. In the end, its trade-offs made it the least effective of the propellants considered during the project.

Graphic depicting the development path for the solar thermal propulsion system.
Graphic depicting the development path for the solar thermal propulsion system.
Credit – Benkoski et al.

Lithium hydride was the surprise winner for the fuel that allows for the fastest escape velocity. Calculations show it could result in a velocity of over 12 AU / yr. However, there are constraints with the fuel’s storage and handling.

Dr. Benkoski settled on a more mundane fuel as the overall winner of the modeling he did – methane. While it generally results in a slower final velocity than lithium hydride, its final speed is still respectable at over 10 AU / yr. It also eliminates many storage hassles of other propellants, such as the cryogenics required to store hydrogen.

There are some drawbacks, though – the calculated maximum speed is only about 1.7 times faster than what could already be done with a gravitational assist from Jupiter, which wouldn’t require all the fancy thermal shielding. There are other downsides to that, though, such as the direction the spacecraft can travel in being limited by where Jupiter is in relation to other objects of interest. Orbiting the Sun, on the other hand, it is possible to reach pretty much anywhere in the solar system and beyond with the right controlled burn.

As Dr. Benkoski notes in the final report, he made plenty of assumptions when doing his modeling calculations, including that the system would only be able to use already-developed technologies rather than speculative ones that could dramatically impact the results. For now, it doesn’t seem NASA has selected this project to move on to Phase II, and it’s unclear what future work is planned for further development. If nothing else, it is a step toward understanding what would be necessary to truly send spacecraft past the Sun and into deep space at a speed much faster than anything else has gone before. Given NASA’s continual attention to this topic, undoubtedly, someday, one of the missions will succeed in doing so.

Learn More:
Benkoski et al – Combined Heat Shield and Solar Thermal Propulsion System for an Oberth Maneuver
UT – Tiny Spacecraft Using Solar Sails Open Up a Solar System of Opportunity
UT – Want the Fastest Solar Sail? Drop it Into the Sun First
UT – A Mission to Reach the Solar Gravitational Lens in 30 Years

Lead Image:
Graphic of a solar thermal propulsion system undergoing a Oberth maneuver around the Sun.
Credit – Jason Benkoski

The post Slingshotting Around the Sun Would Make a Spacecraft the Faster Ever appeared first on Universe Today.



from Universe Today https://ift.tt/hU18fGe
via IFTTT

Comments

Popular posts from this blog

Newcastle boss Eddie Howe pours cold water on moves for Neymar and Cristiano Ronaldo

Newcastle United's newly appointed manager, Eddie Howe, has dismissed rumors linking the club with high-profile signings such as Neymar and Cristiano Ronaldo. In an interview with Sky Sports, Howe stated that while he is always looking to strengthen his squad, he believes that signing players of that caliber would not be realistic at this time. "We have to be realistic about what we can achieve in the transfer market," said Howe. "While we would love to sign players like Neymar or Ronaldo, the reality is that it would not be feasible for us at this moment in time." Howe went on to explain that Newcastle United is currently in a rebuilding phase, and that his focus is on building a solid foundation for the future. "We have to be patient and build something sustainable here," he said. "We can't just throw money at big-name players and hope that it will solve all our problems. We need to build a team that can compete at the highest level, and tha

PUBG Mobile MOD APK v2.2.0 (Unlimited UC, AimBot)

PUBG MOD APK  is available to download below. Now you can download every latest version of  PUBG Mobile MOD APK  in just two minutes. Read the whole post and get Hacked APK with Unlimited UC & AimBot features. Being here, you explain to us the whole thing. You are a PUBG lover and now want to play the Pubg hack version. So, guys, this post will be fascinating for you Because, in this post, you will learn how to download  Pubg Mobile Mod APK  For Android. We will also cover its features and complete essential details you should know in this post. Guys, every gamer who plays the game is aware of PUBG Mobile APK, and now most are aware of  PUBG Mod APK . Let me explain the difference between Pubg Original APK And Pubg Mobile Hack APK. Word I added hack after PUBG explains it. This modified version of PUBG will get you extra control over this game. You can get Aimbot, No Recoil, Unlimited Uc (Anti Ban), etc., by Installing this Mod Apk. In the last post, I shared Some Free & Hacked

INDIA vs PAKISTAN Live Match | Live Score & Commentary | IND vs PAK Live...

   #INDvsPAK #IndiaVsPakistan #PAKvIND #Cricket #ViratKohliand#BabarAzam #live #viral #cricketmatch #Tensport #Ptvsport