Skip to main content

When Earth Danced with Polar Moons

The origins of the Moon have been the cause of many a scientific debate over the years but more recently we seem to have settled on a consensus. That a Mars-sized object crashed into Earth billions of years ago, with the debris coalescing into the Moon. The newly formed Moon drifted slowly away from Earth over the following eons but a new study suggests some surprising nuances to the accepted model. 

According to current theory, the Moon formed around 4.5 billion years ago, shortly after the Solar System’s birth. It began with a massive collision between the early Earth and a Mars-sized protoplanet called Theia. The impact sent debris into orbit around the Earth which eventually coalesced to create the Moon. There is plenty of evidence to support this theory chiefly the composition of Earth’s mantle and lunar rocks.

Artist's impression of the early Solar System, where collision between particles in an accretion disc led to the formation of planetesimals and eventually planets. Those early particles brought primitive minerals to each world. Credit: NASA/JPL-Caltech
Artist’s impression of the early Solar System, where collision between particles in an accretion disc led to the formation of planetesimals and eventually planets. Those early particles brought primitive minerals to each world. Credit: NASA/JPL-Caltech

The majority of the debris cloud settled back down on the Earth, a large proportion formed the Moon but some of it was ejected from the Earth-Moon system. In the paper recently authored by Stephen Lepp and his team from the University of Nevada they explored the dynamics of the material ejected from the impact. 

Shortly after the Moon formed it was orbiting Earth at a distance about 5% of its current value (average distance – 384,400km) but slowly, due to tidal effects between Earth and Moon it drifted away to its current altitude. Its surface was largely molten magma which gradually cooled and solidified forming the familiar crust, mantle and core that we see today. Heavy bombardment scarred the lunar surface with impact basins and craters and volcanic activity led to the slow formation of the lunar maria. 

The orbit of the Moon around the Earth has settled into a slightly elliptical one with an eccentricity of 0.0549. It is not a perfect circle and moves from 364,397km to 406,731km from Earth. The system wasn’t so stable in the early days of the Earth-Moon system and the particles in the accreting Moon had more erratic journeys. 

The Moon on August 24, 2023, with the eQuinox 2 telescope by Unistellar. Credit: Nancy Atkinson.

One of the terms that describes evolving orbits is nodal precession (where the orbital intersections slowly move around the orbit). There are two types and the first relates to where particles in an orbit slowly precess about the angular momentum vector of the Earth-Moon system. The other occurs around highly eccentric binary systems when the inclination of the orbiting object is large. The particle precesses about the binary eccentricity vector. Taking into account the Earth and orbits of particles in the debris cloud as the Moon started to form, such orbits described would be unstable.

The team showed that of all the possible orbits of particles, those in polar orbits were the most stable. They went further and showed that they existed around the Earth-Moon binary system after the Moon formed. As the separation of the Earth and Moon slowly increased through tidal interactions the region of space where polar orbits could exist decreased. Today, with the Moon at its current distance from Earth, there are no stable polar orbits since the nodal precession driven by the Sun is dominant

The team conclude that the presence of polar orbiting material can drive eccentricity growth of a binary system like the Earth and Moon. If a significant amount of material found its way into a polar orbit then the eccentricity of the Earth-Moon system would have increased.  

Source : Polar orbits around the newly formed Earth-Moon binary system

The post When Earth Danced with Polar Moons appeared first on Universe Today.



from Universe Today https://ift.tt/v2xUwIB
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...