Skip to main content

Dark Matter Could a Have Slight Interaction With Regular Matter

The reason we call dark matter dark isn’t because it’s some shadowy material. It’s because dark matter doesn’t interact with light. The difference is subtle, but important. Regular matter can be dark because it absorbs light. It’s why, for example, we can see the shadow of molecular clouds against the scattered stars of the Milky Way. This is possible because light and matter have a way to connect. Light is an electromagnetic wave, and atoms contain electrically charged electrons and protons, so matter can emit, absorb and scatter light. Dark matter isn’t electrically charged. It has no way to connect with light, and so when light and dark matter meet up they simply pass through each other.

All of our observations suggest that dark matter and light only have gravity in common. When dark matter is clustered around a galaxy, for example, its gravitational tug can deflect light. Because of this we can map the distribution of dark matter in the Universe by observing how light is gravitationally lensed around it. We also know that dark and regular matter interact gravitationally. The tug of dark matter causes galaxies to gather together into superclusters. But an unanswered question is whether dark and regular matter only interact gravitationally. If an atom and dark matter particle intersected, would they really just pass through each other?

Since we haven’t directly observed dark matter particles we can only speculate, but most dark matter models argue that gravity is the only common link with light and regular matter. Dark and regular matter clump around each other, but they don’t collide and merge like interstellar clouds. But a new study suggests the two do interact, which could reveal subtle aspects of the mysterious stuff.

The study looks at six ultrafaint dwarf galaxies, or UFDs. They are satellite galaxies near the Milky Way that seem to have far fewer stars than their mass would suggest. This is because they are mostly made of dark matter. If regular and dark matter only interact gravitationally, then the distribution of stars in these small galaxies should follow a certain pattern. If dark and regular matter interact directly, then this distribution will be skewed.

To test this the team ran computer simulations of both scenarios. They found that in the non-interacting model the distribution of stars should become more dense in the center of the UFDs and more diffuse at the edges. In the interacting model the stellar distribution should be more uniform. When they compared these models with observations of the six galaxies, they found the interacting model was a slightly better fit.

So it seems dark and regular matter interact in ways beyond their gravitational tugs. There isn’t enough data to pin down the exact nature of the interaction, but the fact there is any interaction at all is a surprise. It means that our traditional models of dark matter are at least partly wrong. It may also point the way toward new methods of detecting dark matter directly. In time we may finally solve the mystery of this dark, but not entirely invisible, material.

Reference: Almeida, Jorge Sánchez, Ignacio Trujillo, and Angel R. Plastino. “The Stellar Distribution in Ultrafaint Dwarf Galaxies Suggests Deviations from the Collisionless Cold Dark Matter Paradigm.” The Astrophysical Journal Letters 973.1 (2024): L15.

The post Dark Matter Could a Have Slight Interaction With Regular Matter appeared first on Universe Today.



from Universe Today https://ift.tt/YbS3QpZ
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...