Skip to main content

Unloading Cargo on the Moon

I don’t think it’s something I have ever really thought of! Robotic explorers can travel around the Solar System visiting our neighbouring planets but when they arrive, sometimes a scientific package must be deployed to the surface. Never occurred to me just how that’s achieved! With a number of landers scheduled to visit the Moon, NASA are testing a new robotic arm called the Lightweight Surface Manipulation System AutoNomy capabilities Development for Surface Operations or LANDO for short! It will lift payloads off the lander and pop them down gently on the surface of the Moon. 

The Moon has always held a special place in our hearts. Since the first humans saw it as they gazed up at the sky, their descendents continued the fascination with our nearest neighbour. Artists, musicians, poets and writers are among just a few of the members of our society that have reflected on its beauty. It was only natural that it would be the first target for human exploration at the dawn of space flight. The Apollo missions saw the first human visitors to the Moon and now we wait with bated breath as Artemis looks set to take us back again very soon. 

Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit. Image Credit: NASA

Even with human explorers it’s likely only to be a few at a time so mission planners are turning to robotic helpers for the more mundane work. A team of researchers at the Langley Research Centre in Virginia have been working upon a piece of robotic hardware with new software that can operate autonomously to move objects around on the surface! The team, led by Dr Julia Cline from NASA demonstrated the LANDO system and it performed perfectly.

Looking like a movie set, the team established the arena to look like the Moon, complete with boulders that Hollywood would be proud of. The team undertook their first demo by lifting a payload off a tall black pedestal and onto the floor. They then upped the challenge and tried the same manouver but with a small rover instead. Both tests were succesful.

Closeup of lunar surface (Credit NASA)

Pivotal to the system is a series of sensors on the camera and encoders affixed to the side of the package. Once the system was ready the camera scanned the area looking for the payload which was outlined with the encoders (somewhat like a QR code.) Once it identified the item the robotic arm gently swung over the object and carefully manoeuvred its hook to snare the package. With a destination already defined using a graphical interface of the scene, the robotic arm moved around and dropped the placed the package just where the team commanded it too. 

After a succesful delivery the hook slowly disengaged, returned to its home position and paused, ready for the next command. The testing nicely demonstrated the reliability of the system setting the scene for further more advanced tests. Now the team are looking to develop a larger more robust version that can be tested ahead of its first lunar mission.

The use of robotic arms like LANDO are of immense benefit, helping us to explore the Moon. Not only will they help with repetitive tasks but they can perform more precise scientific studies even in the relatively hostile environment of the lunar surface. Their high levels of dexterity and reliability mean they are an ideal tool for further development with lunar ready versions already being worked upon.

Source : Robotic Moving ‘Crew’ Preps for Work on Moon

The post Unloading Cargo on the Moon appeared first on Universe Today.



from Universe Today https://ift.tt/GHJeCmv
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT