Skip to main content

Artemis V Astronauts Will be Driving on the Moon

In the summer of ’69, Apollo 11 delivered humans to the surface of the Moon for the first time. Neil Armstrong and Buzz Aldrin spent just over two hours exploring the area near their landing site on foot. Only during Apollo 15, 16, and 17 did astronauts have a vehicle to move around in.

Artemis astronauts on the Moon will have access to a vehicle right away, and NASA is starting to test a prototype.

Momentum is building behind NASA’s Artemis program despite some setbacks. Artemis astronauts will explore the Moon far more thoroughly than the Apollo astronauts did, and technology is behind the improvement. Surface mobility is a key piece of Artemis. In April of 2024, NASA selected three vendors as part of their Lunar Terrain Vehicle Services contract.

NASA engineers at the Johnson Space Center are designing an unpressurized rover prototype known as the Ground Test Unit. It’s a human-rated, unpressurized LTV (Lunar Terrain Vehicle). The unit is being designed and built as a platform to evaluate rover designs being developed by three private companies: Intuitive Machines, Lunar Outpost, and Venturi Astrolab.

Intuitive Machines is known for its IM-1 mission with its Nova-C Lander. They were the first private company to land a spacecraft on the Moon.

Intuitive Machines' Nova-C lunar lander was the first private spacecraft to land on the Moon. Image Credit: By NASA Marshall Space Flight Center / Intuitive Machines Photo ID: IM_00309., Public Domain, https://commons.wikimedia.org/w/index.php?curid=145130774
Intuitive Machines’ Nova-C lunar lander was the first private spacecraft to land on the Moon. Image Credit: By NASA Marshall Space Flight Center / Intuitive Machines Photo ID: IM_00309., Public Domain, https://ift.tt/hL9ty6e

Lunar Outpost is known for its Mobile Autonomous Prospecting Platform (MAPP) rover (MAPP) rover. MAPP will be used on Intuitive Machines’ IM-2 and IM-3 missions and will demonstrate aspects of In-Situ Resource Utilization.

Venturi Astrolab is known for developing hyper-deformable wheels and batteries for lunar rovers. They’re also developing their FLEX rover, a larger vehicle designed to be modular to meet different objectives.

The LTV will be used to test the technologies these three companies develop. It’ll be used to evaluate crew compartment design, rover maintenance, science payload, and many other aspects of their rovers.

“The Ground Test Unit will help NASA teams on the ground, test and understand all aspects of rover operations on the lunar surface ahead of Artemis missions,” said Jeff Somers, engineering lead for the Ground Test Unit. “The GTU allows NASA to be a smart buyer, so we are able to test and evaluate rover operations while we work with the LTVS contractors and their hardware.”

Two engineers in suits sit on the prototype during testing at the Johnson Space Center. Image Credit: NASA/Bill Stafford
Two engineers in suits sit on the prototype during testing at the Johnson Space Center. Image Credit: NASA/Bill Stafford

NASA has some requirements that the three selected companies need to meet. The rover must support two crew members and be able to be operated remotely. It can use multiple control concepts, such as supervised autonomy, different drive modes, and self-levelling.

NASA used its 'Moon Buggy' or Lunar Roving Vehicle (LRV) on Apollo 15, 16, and 17 in 1971 and 1972. It could carry 440 kg, including two astronauts, and had a top speed of 18 km/h. Though it provided range and mobility, it never travelled further than walking distance from the landers in case of breakdown. Image Credit: By NASA/Dave Scott; Public Domain, https://commons.wikimedia.org/w/index.php?curid=6057491
NASA used its ‘Moon Buggy’ or Lunar Roving Vehicle (LRV) on Apollo 15, 16, and 17 in 1971 and 1972. It could carry 440 kg, including two astronauts, and had a top speed of 18 km/h. Though it provided range and mobility, it never travelled further than walking distance from the landers in case of breakdown. Image Credit: By NASA/Dave Scott; Public Domain, https://ift.tt/m359QhT

By supplying the Ground Test Unit, NASA is making it easier to test the designs from the three companies. It also helps build private sector capacity by enabling testing and iterative design without the separate companies needing to spend money on a GTU. Ground testing also allows for a safer testing environment.

An artist’s illustration of astronauts at the lunar south pole. Image Credit: NASA

When Apollo 11 reached the Moon, it was a civilization-defining moment. There was no reason to explore beyond the landing site since it was as unexplored as the rest of the Moon. But things are much different now.

Thanks to other missions and satellites that orbit the Moon, we have an almost encyclopedic knowledge of our natural satellite compared to the Apollo days. We know what questions we want answered, where we can do the best science, and where useful resources like water ice is. The idea behind Artemis is to go to the Moon and create an infrastructure that will allow us to maintain a presence there.

The Artemis lunar missions will rely on mobility to meet their goals. The LTV will be critical to Artemis’ success by allowing each mission to explore and develop a larger area. NASA intends to use the new rovers starting in Artemis V, which will launch no sooner than 2030.

The post Artemis V Astronauts Will be Driving on the Moon appeared first on Universe Today.



from Universe Today https://ift.tt/NCZLIse
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...