Skip to main content

Astronomers Have Found the Fastest Spinning Neutron Star

Neutron stars are as dense as the nucleus of an atom. They contain a star’s worth of matter in a sphere only a dozen kilometers wide. And they are light-years away. So how can we possibly understand their interior structure? One way would be to simply spin it. Just spin it faster and faster until it reaches a maximum limit. That limit can tell us about how neutron stars hold together and even how they might form. Obviously, we can’t actually spin up a neutron star, but it can happen naturally, which is one of the reasons astronomers are interested in these maximally spinning stars. And recently a team has discovered a new one.

All neutron stars rotate on their axes. They form from the collapse of a massive star’s core, and just as an ice skater spins faster as they pull in their arms, a neutron star spins up as it forms. Young neutron stars can rotate hundreds of times a second, though they generally slow down as they age. Interactions between their magnetic fields and interstellar space cause their rate of rotation to decay. This is why, for example, we can observe pulsars gradually slow down over time.

But many neutron stars have a binary companion. If their companion happens to be a closely orbiting regular star, the neutron star can pull off some of the companion’s outer layer and capture it. The slow exchange of matter can cause the neutron star to speed up as it essentially steals some of the orbital angular momentum of the companion. They are known as millisecond pulsars because they emit a radio pulse every few milliseconds. They are the fastest-rotating stars in the cosmos.

So, just how fast can these neutron stars spin? The record for the fastest spinning pulsar is held by PSR J1748–2446ad. Observations in 2004 and 2005 confirmed it rotates 716 times per second. That’s a bit faster than number two, which rotates at 707 times a second. This new study has found another neutron star rotating at 716 times a second, and it’s interesting because it isn’t a pulsar.

X-ray burst showing the 716 Hz oscillation. Credit: Jaisawal, et al

Known as 4U 1820-30, it is part of a binary X-ray system. As the neutron star captures material from its companion, part of its surface will heat up to such a degree that it emits X-rays. As the neutron star rotates, the hot-spot swings in and out of view, and we observe a periodic pulsation of X-rays. Using NASA’s NICER X-ray telescope, the team observed the binary from 2017 to 2021 and captured data on 15 powerful X-ray bursts. One of these bursts had a clear periodicity of 716 Hz. This strongly suggests the neutron star rotates at that rate.

While it could just be a statistical fluke, the fact that we now have two 716 Hz neutron stars found in two different ways suggests they may be near the maximal rotation limit for a neutron star.

Reference: Jaisawal, Gaurava K., et al. “A Comprehensive Study of Thermonuclear X-Ray Bursts from 4U 1820–30 with NICER: Accretion Disk Interactions and a Candidate Burst Oscillation.” The Astrophysical Journal 975.1 (2024): 67.

The post Astronomers Have Found the Fastest Spinning Neutron Star appeared first on Universe Today.



from Universe Today https://ift.tt/lctEv8Z
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...