Skip to main content

A Superfast Supercomputer Creates the Biggest Simulation of the Universe Yet

Scientists at the Department of Energy’s Argonne National Laboratory have created the largest astrophysical simulation of the Universe ever. They used what was until recently the world’s most powerful supercomputer to simulate the Universe at an unprecedented scale. The simulation’s size corresponds to the largest surveys conducted by powerful telescopes and observatories.

The Frontier Supercomputer is located at the Oak Ridge National Laboratory in Tennessee. It’s the second-fasted supercomputer in the world, behind only El Capitan, which pulled ahead in November, 2024. Frontier is the world’s first exascale supercomputer, though El Capitan has joined the ranks of exascale supercomputing.

The new Frontier simulation is record-breaking and is now the largest simulation of the Universe ever conducted. Its exascale computing allows it to simulate a level of detail that was unreachable prior to its implementation. Exascale is so advanced that it’s difficult to fully exploit its capabilities without new programming paradigms.

Frontier is a significant leap in astrophysical simulations. It covers a volume of the Universe that’s 10 billion light years across. It incorporates detailed physics models for dark matter, dark energy, gas dynamics, star formation, and black hole growth. It should provide new insights into some of the fundamental processes in the Universe, such as how galaxies form and how the large-scale structure of the Universe evolves.

“There are two components in the universe: dark matter—which as far as we know, only interacts gravitationally—and conventional matter, or atomic matter.” said project lead Salman Habib, division director for Computational Sciences at Argonne.

“So, if we want to know what the universe is up to, we need to simulate both of these things: gravity as well as all the other physics including hot gas, and the formation of stars, black holes and galaxies,” he said. “The astrophysical ‘kitchen sink’ so to speak. These simulations are what we call cosmological hydrodynamics simulations.”

Cosmological hydrodynamics simulations combine cosmology with hydrodynamics and allow astronomers to examine the complex interrelationships between gravity and things like gas dynamics and stellar processes that have shaped and continue to shape our Universe. They can only be conducted with supercomputers because of the level of complexity and the vast number of numerical equations and calculations involved.

The sheer amount of energy needed for Frontier to perform these simulations is staggering. It consumes about 21 MW of electricity, enough to power about 15,000 single-family homes in the US. But the payoff is equally as impressive.

“For example, if we were to simulate a large chunk of the universe surveyed by one of the big telescopes such as the Rubin Observatory in Chile, you’re talking about looking at huge chunks of time — billions of years of expansion,” Habib said. “Until recently, we couldn’t even imagine doing such a large simulation like that except in the gravity-only approximation.”

“It’s not only the sheer size of the physical domain, which is necessary to make direct comparison to modern survey observations enabled by exascale computing,” said Bronson Messer, Oak Ridge Leadership Computing Facility director of science. “It’s also the added physical realism of including the baryons and all the other dynamic physics that makes this simulation a true tour de force for Frontier.”

The Exascale-class HPE Cray EX Supercomputer (Frontier) at Oak Ridge National Laboratory. Image Credit: By OLCF at ORNL – https://ift.tt/bJkqhWH, CC BY 2.0, https://ift.tt/Wp6DhCT

Frontier simulates more than just the Universe. In June, researchers working with it achieved another milestone. They simulated a system of 466 billion atoms in a simulation of water. That was the largest system ever modeled and more than 400 times larger than its closest competition. Since water is a primary component of cells, Frontier is paving the way for an eventual simulation of a living cell.

Frontier promises to make advancements in multiple other areas as well, including nuclear fission and fusion and large-scale energy transmission systems. It’s also been used to generate a quantum molecular dynamics simulation that’s 1,000 times greater in size and speed than any of its predecessors. It also has applications in modelling diseases, developing new drugs, better batteries, better materials including concrete, and predicting and mitigating climate change.

Astrophysical/cosmological simulations like Frontier’s are powerful when they’re combined with observations. Scientists can use simulations to test theoretical models compared to observational data. Changing initial conditions and parameters in the simulations lets researchers see how different factors shape outcomes. It’s an iterative process that allows scientists to update their models by identifying discrepancies between observations and simulations.

Frontier’s huge simulation is just one example of how supercomputers and AI are taking on a larger role in astronomy and astrophysics. Modern astronomy generates massive amounts of data, and requires powerful tools to manage. Our theories of cosmology are based on larger and larger datasets that require massive computing power to simulate.

Frontier has already been superseded by El Capitan, another exascale supercomputer at the Lawrence Livermore National Laboratory (LLNL). However, El Capitan is focused on managing the nation’s nuclear stockpile according to the LLNL.

The post A Superfast Supercomputer Creates the Biggest Simulation of the Universe Yet appeared first on Universe Today.



from Universe Today https://ift.tt/kcvHIxV
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT