Skip to main content

China Tests a Reusable Inflatable Module in Space

Inflatable space modules are not a new concept, NASA have been exploring the possibility since the 1960’s. The Chinese Space Agency is now getting in on the act and is testing its new inflatable module which is part of its Shijian-19 satellite launch. To get it into orbit the capsule was compressed and folded and then inflated once in orbit. Following completion of the tests, it re-entered the atmosphere, landing in the Gobi Desert on 10th October. The goal is for this to be used to extend its space station in the same way NASA have been exploring expansion of ISS. 

The idea of inflatable space capsules offers a lightweight solution which simplifies the launch process. Their development began back in the 1960’s but real progress was seen with projects like TransHub that looked at new advanced materials. Even though TransHub was cancelled it was a precursor to ventures like the Bigelow Aerospace module known as BEAM. It was tested in 2016 on the ISS and proved the concept could work making them an invaluable part of the future of space exploration. 

This computer rendering shows the Bigelow Expanded Activity Module in its fully expanded configuration. Image: NASA
This computer rendering shows the Bigelow Expanded Activity Module in its fully expanded configuration. Image: NASA

The Chinese National Space Administration (CNSA) has now started experimentation with inflatable modules. They have been a major player on the global space stage since it was founded in 1993. Among their successes have been the Chang’e lunar missions and the Tianwen-1 Mars explorers. Since 2021, the Tiangong space station has been in orbit high above the Earth and there are now plans for crewed lunar missions. 

Chang'e-6 sample return capsule inspected after landing
A recovery team member checks the Chang’e-6 probe’s sample return capsule after its landing in Inner Mongolia. (Credit: CGTN / CNSA)

On 27th September, the CNSA launched their Shijian-19 retrievable satellite from Jiuquan in China. A test inflatable module was developed and manufactured by the China Academy of Space Technology (CAST) as a landmark step in getting an inflatable module in orbit. They confirmed that the inflatable flexible sealed module completed a successful orbital test. The module is a sealed structure made from composite materials much like the Bigelow Aerospace BEAM module. 

Launch is completed by compressing and folding the module and then inflating upon reaching orbit. The technique makes construction relatively cheap and the launch process far more efficient. Following on from the successful test, CAST promise that larger-scale modules are the next step marking an important step forward in sealed module technology. To arrive at this stage in the development of inflatable technology, CAST completed ground based tests that confirmed they were air tight, could deal with extreme pressures and vibrations and would be capable of with standing impact from space debris. 

A rendering of the Chinese Tiangong space station. Credit: CMSA

The CNSA have confirmed they plan to expand their Tiangong space station and are now exploring the possibility of using inflatable modules as part of their plans. The next likely module to be added is likely to be a multifunctional capsule that will allow other modules to be added. The success of the inflatable module opens up a number of possibilities and opportunities for the Chinese agency, not just for Tiangong but for other space exploration habitats. 

Source : China’s inflatable space capsule passes in-orbit test

The post China Tests a Reusable Inflatable Module in Space appeared first on Universe Today.



from Universe Today https://ift.tt/5tZxdvc
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT