Skip to main content

Covering an Asteroid With Balls Could Characterize Its Interior

Exploring asteroids and other small bodies throughout the solar system has gotten increasingly popular, as their small gravity wells make them ideal candidates for resource extraction, enabling the expansion of life into the solar system. However, the technical challenges facing a mission to explore one are fraught – since they’re so small and variable, understanding how to land on one is even more so. A team from the University of Trieste in Italy has proposed a mission idea that could help solve that problem by using an ability most humans have but never think about.

Have you ever closed your eyes and tried to touch your fingers to one another? If you haven’t, try it now, and you’ll likely find that you can easily. It’s possible to do even without guidance from your five normal senses. That is what is known as proprioception – our hidden “sixth” sense. It is that ability to know where objects are in relation to one another – in this case, where your hands are in relation to one another without any other sensory indication.

Taking that basic idea and extrapolating it to a mission to an asteroid, the basic concept of the mission involves a lander with what seems like a dome with a ton of little balls on it, each facing a slightly different direction. Those balls are then ejected from the dome with varying degrees of force and land on various parts of the asteroid or comet.

Fraser discusses why swarms are becoming so central to our idea of space exploration.

They then create what is known in networking as a “mesh” system by connecting through one another and back to the main lander, which has a higher power output and larger communications array. They also contain a series of sensors, such as a camera, a magnetometer, and, importantly, an inertial measurement unit, or IMU.

IMUs are commonly used in cell phones to tell which direction the phone is oriented—that’s why your phone’s screen will flip upside down if you hold it upside down. They can also measure acceleration, which is why many are used in modern rocketry. They’re tiny and not very power-hungry, allowing them to fit into the ball format used for this mission.

Measurements from each of the remote sensors IMUs can be combined with data about the strength of the force that propelled them to their final resting place and fed into an algorithm, which will then help the base station determine the location of each sensor unit. That then allows measurements from the other sensors, such as the magnetometers and cameras, to paint a picture of the body’s external and internal structure – since magnetic fields, surface objects, and even gravity can vary significantly on small celestial bodies.

There are plenty of missions using swarms to explore asteroids – like the MIDEA project, as described here.
Credit – Cosmic Voyages YouTube Channel

As a proof of concept for this mission design, the team ran a simulation of a mission to comet 67P/Churyumov-Gerasimenko, most widely known for being visited by Rosetta, the ESA mission whose lander, Philae, experienced some of the trouble that is so common on these missions. They found that, depending on the number of projectile sensors, the mission could cover even weird morphologies like 67P/Churyumov-Gerasimenko’s two-lobed form. 

No agency has yet taken up the mission, but as electronics and sensors get smaller and more power efficient and more small bodies become potential resource sources, there might be a place for testing these spaced-out sensors. We’ll have to wait and see—just not with proprioception alone.

Learn More:
Cottiga et al. – Proprioceptive swarms for celestial body exploration
UT – Could You Find What A Lunar Crater Is Made Of By Shooting It?
UT – Swarming Satellites Could Autonomously Characterize an Asteroid
UT – Swarms of Orbiting Sensors Could Map An Asteroid’s Surface

Lead Image:
Depiction of the mission’s lander and deployable sensor system.
Credit – Cottiga et al.

The post Covering an Asteroid With Balls Could Characterize Its Interior appeared first on Universe Today.



from Universe Today https://ift.tt/YGrb4xo
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT