Skip to main content

James Webb’s Big Year for Cosmology

The James Webb Space Telescope was designed and built to study the early universe, and hopefully revolutionary our understanding of cosmology. Two years after its launch, it’s doing just that.

One of the first things that astronomers noticed with the James Webb was galaxies that were brighter and larger than our models of galaxy formation suggested they should be. They were like seeing teenagers in a kindergarten classroom, challenging our assumptions of cosmology. But while there were some breathless claims that the Big Bang was broken, those statements were a little overblown.

But still, big, bright, mature galaxies in the early universe are forcing us to reconsider how galaxy formation is supposed to proceed. Whatever nature is telling us through the James Webb, it seems to be that galaxies form far faster than we thought before.

Related to that, for several years cosmologists have recognized a certain tension in their measurements of the present-day expansion rate of the universe, called the Hubble rate. Appropriately called the Hubble tension, the difference comes when comparing measurements of the distant, early universe with measurements of the later, nearby universe.

There’s definitely something funky going on here, but cosmologists can’t figure out exactly what. It might have something to do with our measurements of the deep universe, or it might be because of our lack of understanding of dark matter and dark energy. Either way, the James Webb didn’t help anything by confirming that the tension is very, very real.

No matter what comes out of the Hubble tension problem, the James Webb is delivering spectacular results in other areas. One of its primary missions was to find evidence for Population III stars, the first generation of stars to appear in the universe. There are no such stars left in the modern-day cosmos, as they all apparently died off billions of years ago. So our only hope to detect them is to use super-telescopes like the James Webb.

This year a team reported the first tentative detections of a galaxy in the young universe that just might contain Population III stars. The detection is not confirmed, but hopefully upcoming observation campaigns will tell us if we’re on the right track.

No matter what, we know we have a lot left to learn about the universe, and that the James Webb will continue delivering results – and hopefully a few surprises – for years to come.

The post James Webb’s Big Year for Cosmology appeared first on Universe Today.



from Universe Today https://ift.tt/Kk1YT9b
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

What Blew Up the Local Bubble?

In our neighborhood of the Milky Way, we see a region surrounding the solar system that is far less dense than average. But that space, that cavity, is a very irregular, elongated shape. What little material is left inside of this cavity is insanely hot, as it has a temperature of around a million Kelvin. from Universe Today https://ift.tt/KvVDeiC via IFTTT