Skip to main content

Posts

Showing posts from January, 2025

There Were Over 260 Orbital Launches in 2024. A New Record

The launch of a rocket into orbit should never become routine. There was a time, probably around the 50’s and 60’s that a rocket launch hit the headlines. Now its just another launch. Last year (2024) saw a record breaking 263 launches. The US launched 158, China launched 68 and other countries/regions like Europe, Russian and Japan. Last year just 224 launches were completed and two years ago in 2022, 168 launches were completed. Surprisingly perhaps, prior to 2020 the record was set at 141 back in 1967, the future of rocket flight still seems quite alive!  Surprisingly perhaps, rocket flight in its purest form dates back centuries with its origins in ancient China. The 9th century Chinese were recorded to have fired gunpowder propelled bamboo tubes at their enemies in the first examples of rocket flight. Modern rocketry only began to take shape in the 20th century thanks to the work from engineers and scientists like Konstantin Tsiolkovsky and Robert Goddard.  Tsiolkovsky...

New Study Explains How Mars Dust Storms Can Engulf the Planet

Mars is well-known for its dust storms, which occur every Martian year during summer in the southern hemisphere. Every three Martian years (five and a half Earth years), these storms grow so large that they are visible from Earth and will engulf the entire planet for months. These storms pose a significant threat to robotic missions, generating electrostatic charges that can interfere with their electronics or cause dust to build up on their solar panels, preventing them from drawing enough power to remain operational. While scientists have studied these storms for decades, the precise mechanisms that trigger them have remained the subject of debate. In a new study , a team of planetary scientists at the University of Colorado Boulder (CU Boulder) has provided new insight into the factors involved. According to their findings, relatively warm and sunny days may kick off the largest storms every few years. These could be the first step toward forecasting extreme weather on Mars, which ...

Could There Be Bacteria Living on Mars Today?

Mars is often considered to be the planet most similar to the Earth. Earth however, is capable of supporting life, Mars on the other hand could not. There was once a time when it was warmer and wetter and could support life. Exploring life on Earth shows us that bacteria known as extremophiles can live in the most harsh conditions on Earth, it may just be possible that there are places on Mars that could also support these hardy forms of life. A new paper explores that possibility by studying the most extreme Earth-based bacteria that could survive under ground on Mars.  Mars, often referred to as the “Red Planet” because of its reddish appearance. It’s the fourth planet from the Sun orbiting at an average distance of 228 million kilometres. It has a thin atmosphere, made up mostly of carbon dioxide with surface temperatures from about -125°C to 20°C. Mars has some fascinating geological features including the largest volcano in the solar system; Olympus Mons, and a vast canyon s...

Is There a Fundamental Logic to Life?

One of the more daunting questions related to astrobiology—the search for life in the cosmos—concerns the nature of life itself. For over a century, biologists have known that life on Earth comes down to the basic building blocks of DNA, RNA, and amino acids. What’s more, studies of the fossil record have shown that life has been subject to many evolutionary pathways leading to diverse organisms. At the same time, there is ample evidence that convergence and constraints play a strong role in limiting the types of evolutionary domains life can achieve. For astrobiologists, this naturally raises questions about extraterrestrial life, which is currently constrained by our limited frame of reference. For instance, can scientists predict what life may be like on other planets based on what is known about life here on Earth? An international team led by researchers from the Santa Fe Institute (SFI) addressed these and other questions in a recent paper . After considering case studies across...

Using an Oil Industry Framework to Map Space Resources

Cracking the chicken-and-egg problem of utilizing resources in space has been a difficult challenge for over half a century. Getting enough infrastructure built up is necessary to collect those resources effectively, but doing so is too expensive without using the resources themselves. Trying to crack that problem has been the focus of a variety of space exploration enthusiasts, and one of them, Don Barker, is currently the Gateway HALO Utilization & Visiting Vehicle Integration Lead at ARES Corporation. He published a paper in 2020 that detailed how the space exploration industry could use a modified version of a framework from the oil and gas industry, which he calls the Planetary Resource Management System (PRMS), to calculate where we should focus on settlement efforts. PRMS is set up as a two-step process: finding resources and then developing the technology to utilize them. Ideally, those technologies would advance to a point where those resource processes would be commerci...

The Webb Captures Spectra of Trans-Neptunian Objects, and Reveals a History of Our Solar System

Trans-Neptunian Objects (TNOs) are small planetoids that orbit the Sun beyond Neptune and Pluto. Their dark and icy character contains the remnant of the early solar system, and as such, they have the potential to reveal its history. But since they are small, distant, and dim, TNOs are very difficult to study. We know that different groups of TNOs have unique histories based on their surface colors and orbits. A new study has looked at their spectra, and it reveals a rich diversity unseen before now. The team used observations from the James Webb Space Telescope (JWST) to capture the spectra of 54 TNOs. They found the planetesimals could be grouped into three categories based on the overall shape of their spectra. Double-dip TNOs have a strong presence of carbon dioxide ice and are the most common of the survey objects. Cliff-type TNOs are reddish and are rich in nitrogen molecules and complex organics. Finally, bowl-type TNOs have dark and dusty surfaces rich in water ice. The auth...

This Particle Only Has Mass When Moving in One Direction

Particle physics is not everyone’s cup of tea.  A team of physicists have theorised the existence of a strange type of particle that behaves differently depending on its direction of travel—massless in one direction but possessing mass when moving the other way! This strange, elusive particle, known as a semi-Dirac fermion or “quasiparticle,” has actually been observed in action. To detect it, researchers cooled a semi-metal crystal to near absolute zero, exposed it to a powerful magnetic field and infrared light, and successfully captured the signal of these unusual quasiparticles. Particle physics is the branch of physics that studies the fundamental make up of matter and the forces that govern their interactions. It focuses on the smallest building blocks of the universe—particles such as quarks, leptons, and bosons—which make up atoms and everything around us. These subatomic particles interact through fundamental forces like electromagnetism, gravity, the strong nuclear forc...

Crisscrossing Dust Devil Tracks Across the Surface of Mars

An incredible image of Mars has been released that captures the relentless activity of dust devils, swirling across the planet’s surface. These Martian whirlwinds form, move across the surface and dissipate before others take their place. The image was taken by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter in September 2022 and shows part of the Haldane Crater, where dust devils have left their mark on the landscape. Scientists study the image tracks and the rate at which dust accumulates on Mars, helping them better understand the planet’s atmospheric processes. Mars, the fourth planet from the Sun, is often referred to as the “Red Planet” because of its reddish colour, which results from iron oxide in its soil. Its atmosphere is thin and mostly made up of carbon dioxide which contributes to its cold climate with an average temperature of around -60°C. The surface of Mars features plains, volcanoes (like Olympus Mons) and the vast canyon system Valles Marineris. Geolog...

A Long-Term Lunar Infrastructure Hub Named After the Object That Created the Moon

Getting back to the Moon is the primary goal of NASA’s Artemis program, but what do we do once we get there? That is the challenge tackled by a group of students at the University of Illinois Urbana-Champaign, who wrote a proposal for a lunar infrastructure module they call the Trans-lunar Hub for Exploration, ISRU, and Advancement – or THEIA, after the proposed object that crashed into the Earth that created the Moon as we know it today. Their submission was part of the NASA Revolutionary Aerospace Systems Concepts – Academic Linkage project, where teams from various academic institutions submitted papers focusing on the theme of Sustained Lunar Evolution for 2024. To be clear, THEIA is not meant to serve as the central hub of NASA’s lunar exploration activities. The responsibility would still go to the Artemis base the agency has been working on. It is meant to serve as a hub for four main things that the team believes every long-term lunar mission will need: power, communications,...

New Study of Supernovae Data Suggests That Dark Energy is an Illusion

Dark energy is central to our modern understanding of cosmology. In the standard model, dark energy is what drives the expansion of the Universe. In general relativity, it’s described by a cosmological constant, making dark energy part of the structure of space and time. But as we’ve gathered more observational evidence, there are a few problems with our model. For one, the rate of cosmic expansion we observe depends on the observational method we use, known as the Hubble tension problem . For another, while we assume dark energy is uniform throughout the cosmos, there are some hints suggesting that might not be true . Now a new study argues we’ve got the whole thing wrong. Dark energy, the authors argue, doesn’t exist. Let’s start with what we know. When we look out across the billions of light-years of cosmic space, we see that matter is clumped into galaxies, and those galaxies are groups into clusters so that the Universe has clumps of matter separated by great voids. On a small ...

New Glenn Completes a Hotfire Test. Next… Flight?

Blue Origin has achieved an important milestone with its New Glenn NG-1 rocket, successfully completing a 24-second hotfire of the rocket’s BE-4 engines in preparation for an expected test flight in the coming days. This was the first time the entire vehicle, including the first and second stages, were tested as a fully integrated system, alongside the ground systems at the launch pad. It gave the engineers a chance to do a dress rehearsal of all the procedures required for launch, and check how well simulation data matches real-world scenarios. Blue Origin confirmed in a press release that “all seven engines performed nominally, firing for 24 seconds, including at 100% thrust for 13 seconds.” The pressurization systems for the first and second stages also performed nominally. Although New Glenn has yet to fly, its BE-4 methane engines have already reached orbit. Twice in 2024 ULA’s Vulcan rocket – the successor to the Atlas V, which had been ULA’s heavy-lift workhorse for two de...

A Young Exoplanet's Atmosphere Doesn't Match its Birthplace

If the modern age of astronomy could be summarized in a few words, it would probably be “the age of shifting paradigms.” Thanks to next-generation telescopes, instruments, and machine learning, astronomers are conducting deeper investigations into cosmological mysteries, making discoveries, and shattering preconceived notions. This includes how systems of planets form around new stars, which scientists have traditionally explained using the Nebular Hypothesis . This theory states that star systems form from clouds of gas and dust (nebulae) that experience gravitational collapse, creating a new star. The remaining gas and dust then settle into a protoplanetary disk around the new star, which gradually coalesces to create planets. Naturally, astronomers theorize that the composition of the planets would match that of the disk itself. However, when examining a still-developing exoplanet in a distant star system, a team of astronomers uncovered a mismatch between the gases in the planet’...