Skip to main content

Juno Sees a Massive Hotspot of Volcanic Activity on Io

New images from NASA’s Juno spacecraft make Io’s nature clear. It’s the most volcanically active world in the Solar System, with more than 400 active volcanoes. Juno has performed multiple flybys of Io, and images from its latest one show an enormous hotspot near the moon’s south pole.

Juno was sent to Jupiter to study the giant planet, but that primary mission ended, and NASA extended the mission. Currently, it is performing flybys of three of the Galilean moons: Ganymede, Europa, and Io. We’ve reported on Juno’s Io flybys previously.

In its latest flyby, the orbiter imaged a volcanic hotspot on the moon’s south pole larger than Lake Superior. The images are from Juno’s JIRAM (Jovian Infrared Auroral Mapper) instrument. According to NASA, the hot spot’s eruptions are six times more energetic than all of Earth’s power plants and its radiance measured well above 80 trillion watts.

“The data supports that this is the most intense volcanic eruption ever recorded on Io.”

Alessandro Mura, Juno co-investigator, National Institute for Astrophysics in Rome

“Juno had two really close flybys of Io during Juno’s extended mission,” said the mission’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio. “And while each flyby provided data on the tormented moon that exceeded our expectations, the data from this latest — and more distant — flyby really blew our minds. This is the most powerful volcanic event ever recorded on the most volcanic world in our solar system — so that’s really saying something,” Bolton said in a NASA press release.

A map of Io with prominent features labelled. The new hot spot is roughly in the vicinity of Lerna Regio. Image Credit: By NASA/JPL/USGS/Jason Perry - https://astrogeology.usgs.gov/Projects/JupiterSatellites/io.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9096280
A map of Io with prominent features labelled. The new hot spot is roughly in the vicinity of Lerna Regio. Image Credit: By NASA/JPL/USGS/Jason Perry – https://ift.tt/vDCpK7N, Public Domain, https://ift.tt/QlUmIuq

Io is volcanic because of tidal heating. Io is the innermost of Jupiter’s four Galilean moons and is roughly the same size as Earth’s Moon. However, it’s very close to the much larger Jupiter, follows an elliptical orbit, and completes one every 42.5 hours. Jupiter is roughly 300 times more massive than Earth. That means that Jupiter dwarfs Io, and as the moon orbits the gas giant, the gas giant has its way with it. Jupiter stretches and pulls on the little moon, causing it to flex and change shape, creating internal heat. The other Galilean moons also contribute.

This simple graphic explains tidal heating on Io. (A) Of the four major moons of Jupiter, Io is the innermost one. Gravity from these bodies pulls Io in varying directions. (B) Io's eccentric orbit. Io's shape changes as it completes its orbit. (C) Earth's moon's orbit is actually more eccentric than Io's, but Earth's gravity is much weaker than Jupiter's, so Earth's moon does not experience as much deformation. Image Credit: By Lsuanli - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31959004
This simple graphic explains tidal heating on Io. (A) Of the four major moons of Jupiter, Io is the innermost one. Gravity from these bodies pulls Io in varying directions. (B) Io’s eccentric orbit. Io’s shape changes as it completes its orbit. (C) Earth’s moon’s orbit is actually more eccentric than Io’s, but Earth’s gravity is much weaker than Jupiter’s, so Earth’s moon does not experience as much deformation. Image Credit: By Lsuanli – Own work, CC BY-SA 3.0, https://ift.tt/4wrIQib

The heat is enough to melt the moon’s interior into molten rock. The tidal flexing creates an endless series of plumes and ash that make the moon the most volcanically active body in the Solar System. The ash also paints the small moon’s surface.

During its extended mission, Juno flies past Io on every other orbit, meaning the images can track any changes on the surface. During a previous flyby on February 3rd, 2024, Juno came within 1,500 km (930 mi) of the moon’s surface.

This image shows Juno’s path over Io on February 3rd, 2024, the spacecraft’s closest flyby of the volcanic moon. The path is colour-coded by altitude. Image Credit:

During this latest flyby, it was much further away. It only got to within about 74,400 kilometres (46,200 mi) of the moon, and its JIRAM instrument was pointed at the south pole.

“JIRAM detected an event of extreme infrared radiance — a massive hot spot — in Io’s southern hemisphere so strong that it saturated our detector,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “However, we have evidence what we detected is actually a few closely spaced hot spots that emitted at the same time, suggestive of a subsurface vast magma chamber system. The data supports that this is the most intense volcanic eruption ever recorded on Io.”

This feature, which has yet to be named, dwarfs Loki Patera, the lake of lava detected in 2015 during a rare orbital alignment between Io and Europa. Loki Patera is 202 kilometres (126 mi) in diameter, covers 20,000 sq km (7,700 sq mi), and was the largest volcanic feature found on Io until these new observations revealed the hot spot in the south polar region. The new hot spot covers 100,000 sq km (40,000 sq mi).

Juno also captured images of the hot spot region with its JunoCam imager. Though the images were captured from different distances and are somewhat grainy, they still reveal surface colour changes near the south pole. Scientists know that these colour changes are associated with hot spots and volcanic activity.

Juno's JunoCam imager captured these images of Io in 2024. They show significant and visible surface changes (indicated by the arrows) near the Jovian moon's south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno's orbit when it is closest to Jupiter. Image Credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Jason Perry
Juno’s JunoCam imager captured these images of Io in 2024. They show significant and visible surface changes (indicated by the arrows) near the Jovian moon’s south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno’s orbit when it is closest to Jupiter. Image Credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Jason Perry

Juno will fly by Io again on March 3rd. It will examine the hotspot again and try to discern any more surface changes. Massive eruptions like this one leave their mark on the surface, and these marks can be long-lived. The eruptions can leave behind pyroclastic deposits, lava flows, and sulphur-rich deposits from plumes that colour the moon’s surface. It’s also possible that Earth-based observations can probe the same region.

Scientists have unanswered questions about Io’s extreme volcanic activity. They know tidal heating is the root cause, but they don’t have a clear understanding of how the heat moves through Io’s interior. They also don’t know if the moon has a global, subsurface lava ocean, though some studies suggest it does. They also wonder about the relationship between the volcanoes and Jupiter’s magnetosphere, where much of the material from the volcanoes goes. The long-term evolution of Io’s volcanic activity is also shrouded in mystery. How has it changed over time?

This is a map of the predicted heat flow at the surface of Io from different tidal heating models. Red areas are where more heat is expected at the surface while blue areas are where less heat is expected. Figure A shows the expected distribution of heat on Io's surface if tidal heating occurred primarily within the deep mantle, and figure B is the surface heat flow pattern expected if heating occurs primarily within the asthenosphere. In the deep mantle scenario, surface heat flow concentrates primarily at the poles, whereas in the asthenospheric heating scenario, surface heat flow concentrates near the equator. Credit: NASA/Christopher Hamilton.
This is a map of the predicted heat flow at the surface of Io from different tidal heating models. Red areas are where more heat is expected at the surface, while blue areas are where less heat is expected. Figure A shows the expected distribution of heat on Io’s surface if tidal heating occurred primarily within the deep mantle, and Figure B is the surface heat flow pattern expected if heating occurs primarily within the asthenosphere. In the deep mantle scenario, surface heat flow concentrates primarily at the poles, whereas in the asthenospheric heating scenario, surface heat flow concentrates near the equator. Credit: NASA/Christopher Hamilton.

Answers to these questions will also tell scientists about volcanism on other worlds.

“While it is always great to witness events that rewrite the record books, this new hot spot can potentially do much more,” said Bolton. “The intriguing feature could improve our understanding of volcanism not only on Io but on other worlds as well.”

The post Juno Sees a Massive Hotspot of Volcanic Activity on Io appeared first on Universe Today.



from Universe Today https://ift.tt/vZeQNh6
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...