Skip to main content

A New Explanation for Why Mars is Red

Well that’s ruined all my lectures! I’ve spent years talking about space and a go to fact is the red colour of Mars. It’s been long believed that it was caused by the same chemical process that creates rust on Earth, a new paper suggests this is not the case! The team of researchers simulated conditions of Mars in a lab and now think a chemical called ferrihydrite, an iron oxide that contains water. It now looks like the planet’s characteristic red colour is due to a time when Mars was covered in water! 

Mars, often called the Red Planet is the fourth planet from the Sun. With a thin atmosphere composed mostly of carbon dioxide, Mars features a stark landscape of vast plains, huge volcanoes including Olympus Mons (the largest in our solar system), and deep canyons like Valles Marineris. Its surface has evidence of ancient rivers and lakes, suggesting Mars once had conditions that could have been suitable for microbial life. Its extreme temperature changes and frequent global dust storms are typical of this harsh world. 

Mars seen before, left, and during, right, a global dust storm in 2001. Credit: NASA/JPL/MSSS

The distinctive red colour goes back centuries; the ancient Egyptians called Mars ‘Her Desher’ which translates to ‘the Red One’, the Romans named it after the God of war and the Chinese called it ‘the fire star.’ Even Babylonian records that go back to 2000 BC noted its red colour. In 1610, when Galileo first observed Mars through a telescope, he confirmed its planetary nature but also noted a more red/brown hue. This was largely due to the poor quality optics of the day and it wasn’t until optics improved that its red colour was observed in all its glory.

A bust of Galileo at the Galileo Museum in Florence, Italy. The museum is displaying recovered parts of his body. Credit Kathryn Cook for The New York Times

A team of researchers led by Dr Adomas Valantinas from Brown University in USA have published a paper in Nature Communications that has analysed the red colouration of Mars and challenge the common view that it’s a rust like material that is responsible. They used data from a number of different Mars missions from NASA’s Reconnaissance Orbiter to ESA’s Mars Express and ExoMars (which has the Colour and Stereo Surface Imaging System onboard.) The data from the orbiters was supported by data from various rovers too and further supplemented by analysis of artificial Mars-like materials in a laboratory.

Mars Express, which is now studying Phobos.
An artist’s illustration of the Mars Express Orbiter above Mars. Its MARSIS instrument has been updated so it can study the moon Phobos. Image Credit: Spacecraft: ESA/ATG medialab; Mars: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

The analysis, which included experiments and measurements at the University of Grenoble, Brown University and the University of Winnipeg revealed the presence of Ferrihydrite. Not only was it present in the Martian dust, it seemed to be widespread across the Martian landscape. Ferriydrite is an oxyhydroxide mineral (one that contains oxygen, hydrogen and at least one metal.)

The widespread discovery of ferrihydrite on in Martian dust helps us to understand more about the geological history of Mars and its potential habitability. The existence of the ferrihydrite tells us that there were once cooler, wet conditions on Mars since that is a neccessity for the formation of the mineral. It’s an exciting discovery because its one more reason to believe that Mars was once a hospitable world. 

The team are keen to learn more and are now waiting for Martian samples to study directly and for that, they are waiting for the Perseverance rover. It has been systematically collecting core samples of Martian soil from the Jezero Crater and storing them in titanium tubes ready for transport home. Once the team has these, they will be able to check whether their theory about ferrihydrite is correct.

Source : Why Mars could be red

The post A New Explanation for Why Mars is Red appeared first on Universe Today.



from Universe Today https://ift.tt/asxF5WZ
via IFTTT

Comments

Popular posts from this blog

Researchers Match Up 12 Meteorites with the Near-Earth Asteroids They Came From

Every day meteoroids blast through our planet’s atmosphere to hit the ground as meteorites. A team of researchers in Italy traced twelve of them to progenitor asteroids that orbit in near-Earth space. Scientists treasure meteorites because they reveal information about their parent bodies. In an arXiv paper, two Italian researchers—Albino Carbognani and Marco Fenucci—analyze the characteristics of the parent bodies of 20 selected meteorites. They were able to track all but eight back to their parent asteroids. Based on their work, the pair says at least a quarter of meteorites come from collisions that happened in near-Earth space and not in the Main Belt. Meteorites from Near-Earth Asteroids: How They Got Here Many meteorites are chondritic, similar to asteroids in the Main Belt (or came from it). In their paper, the authors point out that progenitor meteoroids (including many that fall to Earth and become meteorites) formed millions of years ago following collisions between main-...

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System. The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better. Ganymede is basically a planet, except it doesn’t orbit the Sun. If it did orbit the Sun instead of Jupiter, it would be indistinguishable from a planet. It has a differentiated internal structure with a molten core that produces a magnetic field. It has a silicon mantle much like Earth’s, and has a complex icy crust with a deep ocean submerged beneath it. It has an atmosphere, though it’s thin. It’s also larger than Mercury, and almost as large as Mars. According to the authors of a new study, it’s an archetype of a water world. But even with all this knowledge of the huge moon, there are details yet to be revealed. This is especially true of its complex surface...

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems . With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ). By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass , altering the boundaries of the CHZ. In a recent study , a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of star...