Skip to main content

Posts

Showing posts from October, 2024

Webb Detects Carbon Dioxide and Hydrogen Perodixe on Pluto’s moon Charon

The James Webb Space Telescope (JWST) has revealed magnificent things about the Universe. Using its sophisticated infrared optics, it has peered deeper into space (and farther back in time) than any observatory to date, gathering data on the first galaxies to form in our Universe. It has also obtained spectra from exoplanets, revealing things about the chemical composition of their atmospheres. In addition, Webb has provided some stunning views of objects within our Solar System, like Jupiter and its auroras , Saturn’s rings and moons , and Neptune and its satellites . Recently, a team led by researchers from Southwest Research Institute (SwRI) used Webb Near-Infrared Spectrograph (NIRSpec) to closely examine the Pluto-Charon system. Their observations detected frozen carbon dioxide and hydrogen peroxide on the surface of Pluto’s largest moon for the first time. These discoveries add to what scientists learned about Charon’s chemical inventory from ground-based telescopes and the Ne

The GALAH Fourth Data Release Provides Vital Data on One Million Stars in the Milky Way.

For the past ten years, Australia’s ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has been investigating star formation, chemical enrichment, migration, and mergers in the Milky Way with the Anglo-Australian Telescope (AAT). Their work is part of the GALactic Archaeology with HERMES (GALAH) project, an international collaboration of more than 100 scientists from institutes and universities worldwide. These observations have led to the highest spectral resolution multi-dimensional datasets for over a million stars in the Milky Way. Previous GALAH data releases have led to many significant discoveries about the  evolution of the Milky Way , the existence of  exoplanets , hidden  star clusters , and  many more . In the fourth data release (DR4), the GALAH team released the chemical fingerprints (spectra) for almost 1 million stars. This data is the pinnacle of the 10-year project and was released during the 50th anniversary celebration of the AAT. Accor

The Sun Unleashes its Strongest Flare This Cycle

Yesterday the Sun released a huge solar flare, and it’s heading toward Earth! It’s nothing to worry about since it’s nowhere near as large as the Carrington Event of 1859 , but it is large enough to give us some amazing aurora. Large solar flares happen periodically. Quite literally, because the Sun goes through an 11-year cycle of lower and higher activity. Right now the Sun is near the maximum of a cycle, so we see lots of sunspots and flares. When astronomers first studied the cycle they could only measure the number of sunspots at a given time. Solar flares were largely invisible to early telescopes. But now with orbiting observatories such as the Solar Dynamics Observatory, we can capture images of solar flares in real time. Astronomers now categorize the strength of solar flares by the intensity of x-rays they emit, known as their x-class . The categories are numbered by power level, with each category double the previous one. So, for example, an X2 flare is twice as powerful a

What’s the Best Material for a Lunar Tower?

Physical infrastructure on the Moon will be critical to any long-term human presence there as both America and China gear up for a sustained human lunar presence. Increasingly, a self-deploying tower is one of the most essential parts of that physical infrastructure. These towers can hold numerous pieces of equipment, from solar panels to communications arrays, and the more weight they can hold in the lunar gravity, the more capable they become. So it’s essential to understand the best structural set-up for these towers, which is the purpose of a recent paper by researchers at North Carolina State University and NASA’s Langley Research Center.  Several technologies underpin that structure, which was developed under NASA’s Self-Erectable Lunar Tower for Instruments (SELTI) project. One of the most important technologies is the material the tower consists of. In their study, the researchers looked at two types of material: the corrugated rollable tubular boom (COROTUB) and collapsible

What Does a Trip to Mars Do to the Brain?

It’s not long before a conversation about space travel is likely to turn to the impact on the human body. Our bodies have evolved to exist on Earth with a constant force of 1G acting upon them but up in orbit, all of a sudden that force is apparently lacking. The impact of this is well known; muscle loss and reduction in bone density but there are effects of spaceflight. Cosmic radiation from the Galaxy has an impact on cognition too, an effect that has recently been studied in mice! When an object like the space station is in orbit around the Earth it is in a state known as freefall. This means it is constantly falling to Earth but the curvature of the Earth is constantly falling away from it. In other words, it is constantly falling but never reaches the ground. This state means anyone or anything inside the space station would also fall at the same rate but this would be experienced as floating. Muscle loss and reduction in bone density are the well known impacts of such an enviro

Could a New Sungrazer Comet Put on a Show at the End of October?

Could this be the next great comet? To be sure, these words have been said lots of times before. In a clockwork sky, how comets will perform is always the great wildcard. Comets from Kohoutek to ISON have failed to live up to expectations, while others like W3 Lovejoy took us all by surprise. But a discovery this past weekend has message boards abuzz, as an incoming sungrazer could put on a show right around Halloween. Anatomy of a Sungrazer The discovery comes to us from the prolific Asteroid Terrestrial-impact Last Alert System (ATLAS), which first spotted the comet on the night of September 27 th . The initial designation of the comet was A11bP7I. The comet now has an official designation: C/2024 S1 ATLAS. This was announced on October 1 st , in the International Astronomical Union’s Central Bureau for Astronomical Telegram’s message 5453 . The orbit of Comet C/2024 S1 ATLAS. Credit: NASA/JPL. The highly eccentric hyperbolic orbit of the comet suggests it’s a member of the K

Gravitational Lens Confirms the Hubble Tension

We’ve known the Universe is expanding for a long time. The first solid paper demonstrating cosmic expansion was published by Edwin Hubble in 1929, based on observations made by Vesto Slipher, Milton Humason, and Henrietta Leavitt . Because of this, the rate of cosmic expansion is known as the Hubble constant, or Hubble parameter, H 0 . From this parameter, you can calculate things such as the age of the Universe since the Big Bang, so knowing the value of H 0 is central to our understanding of modern cosmology. Early on, the measured value of the Hubble parameter varied widely. Hubble’s initial value was on the order of 500 (km/s)/Mpc. By the 1960s, the value settled down to between 50 and 90 (km/s)/Mpc, where it stayed for most of the 20th century. It was difficult to get more precise because our methods of calculating it were limited. All of these were based on the cosmic distance ladder , which uses a series of observations to calculate ever greater cosmic distances, each buildin

Jets From Supermassive Black Holes Create New Stars Along Their Trajectory

Since the 1970s, astronomers have observed that supermassive black holes (SMBHs) reside at the centers of most massive galaxies. In some cases, these black holes accelerate gas and dust from their poles, forming relativistic jets that can extend for thousands of light-years. Using the NASA/ESA Hubble Space Telescope , a team of astronomers observed the jet emanating from the center of M87, the supermassive galaxy located 53.5 million light-years away. To their surprise, the team observed nova erupting along the jet’s trajectory , twice as many as they observed in M87 itself. The team was led by Alec M. Lessing, a Stanford University astronomer, and included researchers from the American Museum of Natural History, the University of Maryland Baltimore, Columbia University, Yale University, the SETI Institute, and NASA’s Goddard Space Flight Center. The paper detailing their findings recently appeared in The Astrophysical Journal . Their research was part of a 9-month survey of the M87

NASA Turns Off One of Voyager 2's Science Instruments

The two Voyager spacecraft have been speeding through space since 1977, powered by decaying chunks of plutonium that produce less and less energy every year. With less electricity available, NASA has decided to shut down one experiment on Voyager 2, the plasma science instrument. This device measures the quantity and direction of ionized particles passing the spacecraft. While Voyager 2 still has enough electricity to support its four other operational instruments, it will likely be down to just one by the 2030s. NASA said that over the past several years, engineers for the mission have taken steps to avoid turning off any science instruments for as long as possible since the science data collected by the two Voyager probes is unique. As the first spacecraft to reach interstellar space — the region outside the heliosphere – this is currently our only chance to study this region. However, this particular instrument has been collecting limited data in recent years due to its orientati

Bernard's Star Has a Planet (Again)!

The thing about exoplanets is that astronomers don’t see them the way most people think they do. Part of the reason for that is the way we announce them. Whenever an interesting exoplanet is discovered, the press release usually has colorful artwork showing oceans, mountains, and clouds. Something visually captivating like the image above. But the reality is that we have only imaged a few exoplanets directly, and even then, they appear only as small fuzzy blobs. Most of the known exoplanets were discovered by the transit method , where the star dims slightly as the planet passes in front of it. So what astronomers actually see is a periodic flickering of starlight. This isn’t a problem for astronomers, since they are interested in data, not pretty pictures. Usually, the data is strong enough to confirm the presence of an exoplanet without directly observing it. But sometimes the observational data can be a bit more fuzzy, and that means we might think a planet is there only for furth

An Earth-like Planet Around a Dead Sun Provides Some Reassurance About the Future of Earth

In about five billion years, our Sun will exit its main sequence phase and transition to its red giant phase. At this point, the Sun will expand and consume the planets of the inner Solar System, including Mercury and Venus. What will become of Earth when this happens has been the subject of debate for many decades. But with the recent explosion in exoplanet discoveries, 5,759 confirmed in 4,305 systems so far, astronomers hope to learn more about how planets fare as their stars near the end of their life cycle. Using the 10-meter telescope at the Keck Observatory in Hawaii, an international team of astronomers discovered an Earth-like planet orbiting a white dwarf star 4,000 light-years from Earth. This planet orbits its star, about half the mass of our Sun, at a distance roughly twice that of the Earth today. The system resembles what is expected to become of our system once the Sun has exhausted the last of its fuel and blows off its outer layers in a supernova. It also offers s

We Don’t See Many Planets in Old Triple Star Systems

Why is it important to search for exoplanets in triple star systems and how many can we find there? This is what a recent study accepted by Astrophysics & Space Science hopes to address as a pair of researchers from the University of Texas at Arlington investigated the statistical likelihood of triple star systems hosting exoplanets. This study holds the potential to help researchers better understand the formation and evolution of triple star systems and whether they are suitable to find life as we know it. Here, Universe Today discusses this incredible research with Dr. Manfred Cuntz , who is a physics professor at the University of Texas at Arlington and lead author of the study, regarding the motivation behind the study, the most significant results, the importance of studying triple star systems, and the likelihood of finding exolife in triple star systems. Therefore, what was the motivation behind the study? Dr. Cuntz tells Universe Today , “Ages and metallicity (i.e

Perseverance Finds a Strange Black-and-White Striped Rock on Mars

The hits just keep on coming from the Mars Perseverance rover. It’s exploring Jezero Crater on the Red Planet, looking for evidence of microbial life in the planet’s ancient (or even recent) past. Recently it spotted a very strange-looking rock with black and white stripes. Its appearance and location sparked a lot of questions. Perseverance team members have named it “Freya Castle.” From the image, this chunk looks remarkably similar to metamorphic rocks on Earth. The most familiar are gneiss, marble, and schist (to name a few). According to Jeffrey Kargel of the Planetary Science Institute, who speculated on what Freya Castle could be, it resembles a very high-grade type of rock similar to what we find here at home. “It looks like and plausibly is, a metamorphic rock containing feldspar or other white-ish minerals arranged in something called boudinage,” he said. “That word stems from French, relating to a chain-link sausage-like structure. In the case of rocks, it forms when you h