Skip to main content

Posts

Showing posts from November, 2024

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA’s Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) mission landed on Mars. This was a major milestone in Mars exploration since it was the first time a research station had been deployed to the surface to probe the planet’s interior. One of the most important instruments InSight would use to do this was the Heat Flow and Physical Properties Package (HP 3 ) developed by the German Aerospace Center (DLR). Also known as the Martian Mole, this instrument measured the heat flow from deep inside the planet for four years. The HP 3 was designed to dig up to five meters (~16.5 ft) into the surface to sense heat deeper in Mars’ interior. Unfortunately, the Mole struggled to burrow itself and eventually got just beneath the surface, which was a surprise to scientists. Nevertheless, the Mole gathered considerable data on the daily and seasonal fluctuations below the surface. Analysis of this data by a team from the German A

Another Way to Extract Energy From Black Holes?

The gravitational field of a rotating black hole is powerful and strange. It is so powerful that it warps space and time back upon itself, and it is so strange that even simple concepts such as motion and rotation are turned on their heads. Understanding how these concepts play out is challenging, but they help astronomers understand how black holes generate such tremendous energy. Take, for example, the concept of frame dragging. Black holes form when matter collapses to be so dense that spacetime encloses it within an event horizon. This means black holes aren’t physical objects in the way they are used to. They aren’t made of matter, but are rather a gravitational imprint of where matter was. The same is true for the gravitational collapse of rotating matter. When we talk about a rotating black hole, this doesn’t mean the event horizon is spinning like a top, it means that spacetime near the black hole is twisted into a gravitational echo of the once rotating matter. Which is wher

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S. tons) of plastic annually, two-thirds of which are only used for a short time and quickly become garbage. What’s more, plastics are the most harmful and persistent fraction of marine litter, accounting for at least 85% of total marine waste . This problem is easily recognizable due to the Great Pacific Garbage Patch and the amount of plastic waste that washes up on beaches and shores every year. Unless measures are taken to address this problem, the annual flow of plastic into the ocean could triple by 2040 . One way to address this problem is to improve the global tracking of plastic waste using Earth observation satellites. In a recent study , a team of Australian researchers developed a new method for spotting plastic rubbish on our beaches, which they successfully field-tested on a remote stretch of coastline. This satellite imagery tool distinguishes between sand, water, and plastics bas

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

Space-based telescopes are remarkable. Their view isn’t obscured by the weather in our atmosphere, and so they can capture incredibly detailed images of the heavens. Unfortunately, they are quite limited in mirror size. As amazing as the James Webb Space Telescope is, its primary mirror is only 6.5 meters in diameter. Even then, the mirror had to have foldable components to fit into the launch rocket. In contrast, the Extremely Large Telescope currently under construction in northern Chile will have a mirror more than 39 meters across. If only we could launch such a large mirror into space! A new study looks at how that might be done. As the study points out, when it comes to telescope mirrors, all you really need is a reflective surface. It doesn’t need to be coated onto a thick piece of glass, nor does it need a big, rigid support structure. All that is just needed to hold the shape of the mirror against its own weight. As far as starlight is concerned, the shiny surface is all tha

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old then! It’s an incredible achievement that technology that was built THAT long ago is still working. Yet here we are in 2024, Voyager 1 and 2 are getting older. Earlier this week, NASA had to turn off one of the radio transmitters on Voyager 1. This forced communication to rely upon the low-power radio. Alas technology around 50 years old does sometimes glitch and this was the result of a command to turn on a heater. The result was that Voyager 1 tripped into fault protection mode and switch communications! Oops.  Voyager 1 is a NASA space probe launched on September 5, 1977, as part of the Voyager program to study the outer planets and beyond. Initially, Voyager 1’s mission focused on flybys of Jupiter and Saturn, capturing incredible images before traveling outward. In 2012, it became the first human-made object to enter interstellar space, crossing the heliopause—the boundary between the influence of the Su

China Trains Next Batch of Taikonauts

China has a fabulously rich history when it comes to space travel and was among the first to experiment in rocket technology. The invention of the rocket is often attributed to the Sung Dynasty (AD 960-1279.) Since then, China has been keen to develop and build its own space industry. The Chinese National Space Administration has already successfully landed probes on the Moon but is preparing for their first human landers. Chinese astronauts are sometimes known as taikonauts and CNSA has just confirmed their fourth batch of taikonauts are set for a lunar landing.  The Chinese National Space Administration (CNSA) is China’s equivalent to NASA. It was founded in 1993 to oversee the country’s space aspirations. Amazing results have been achieved over the last twenty years including the landmark Chang’e lunar missions. In 2019 Chang’e-4 landed on the far side of the Moon, the first lunar lander to do so and in 2021 became the third country to land a rover on Mars. In 2021 the first modul

NASA Focusses in on Artemis III Landing Sites.

It was 1969 that humans first set foot on the Moon. Back then, the Apollo mission was the focus of the attempts to land on the Moon but now, over 50 years on, it looks like we are set to head back. The Artemis project is the program that hopes to take us back to the Moon again and it’s going from strength to strength. The plan is to get humans back on the Moon by 2025 as part of Artemis III. As a prelude to this, NASA is now turning its attention to the possible landing sites.  The Artemis Project is NASA’s program aimed at returning humans to the Moon and establishing a permanent base there. Ultimately with a view to paving the way for missions to Mars. With the first launch in 2017, Artemis intends to land “the first woman and the next man” on the lunar surface by 2025.  The program began with Artemis I and an uncrewed mission which orbited the Moon. Arte is II will take astronauts on an orbit of the Moon and finally Artemis III will land humans back on the Moon by 2025. At the hea

The Connection Between Black Holes and Dark Energy is Getting Stronger

The discovery of the accelerated expansion of the Universe has often been attributed to the force known as dark energy. An intriguing new theory was put forward last year to explain this mysterious force; black holes could be the cause of dark energy! The theory goes on to suggest as more black holes form in the Universe, the stronger the pressure from dark energy. A survey from the Dark Energy Spectroscopic Instrument (DESI) seems to support the theory. The data from the first year of operation shows the density of dark energy increases over time and seems to correlate with the number and mass of black holes!  Cast your mind back 4 billion years to the beginning of the Universe. Just after the Big Bang, the moment when the Universe popped into existence, there was a brief period when the Universe expanded faster than the speed of light. Before you argue that nothing can travel faster than the speed of light we are talking of the very fabric of space and time expanding faster than th

Will Advanced Civilizations Build Habitable Planets or Dyson Spheres

If there are alien civilizations in the Universe, some of them could be super advanced. So advanced that they can rip apart planets and create vast shells surrounding a star to capture all its energy. These Dyson spheres should be detectable by modern telescopes. Occasionally astronomers find an object that resembles such an alien megastructure, but so far, they’ve all turned out to be natural objects . As best we can tell, there are no Dyson spheres out there. And when you think about it, building a Dyson sphere is the cosmic endgame of a capitalist dystopia. In the never-ending quest to capture and consume every last bit of energy, your civilization rips worlds asunder, moving heaven and earth to create an orbitally unstable, unlivable engine. If you can traverse light-years and transform planets, why not just move Earth-like planets and moons into a star’s habitable zone and have a nice cluster of comfy planets to live on? If this kind of stellar-punk civilization is out there, co

Orbital Debris is Getting Out of Control

In 1978, NASA scientists Donald J. Kessler and Burton G. Cour-Palais proposed a scenario where the density of objects in Low Earth Orbit (LEO) would be high enough that collisions between objects would cause a cascade effect. In short, these collisions would create debris that would result in more collisions, more debris, and so on. This came to be known as the Kessler Syndrome , something astronomers, scientists, and space environmentalists have feared for many decades. In recent years, and with the deployment of more satellites than ever, the warning signs have become undeniable. Currently, there is an estimated 13,000 metric tons (14,330 US tons) of “space junk” in LEO. With the breakup and another satellite in orbit – the Intelsat 33e satellite – the situation will only get worse. This broadband communications satellite was positioned about 35,000 km (21,750 mi) above the Indian Ocean in a geostationary orbit (GSO). According to initial reports issued on October 20th, the Intelsa

Webb Reveals a Steam World Planet Orbiting a Red Dwarf

The JWST has found an exoplanet unlike any other. This unique world has an atmosphere almost entirely composed of water vapour. Astronomers have theorized about these types of planets, but this is the first observational confirmation. The unique planet is GJ 9827 d . It’s about twice as large as Earth and three times as massive, and it orbits a K-type star about 100 light years away. The Kepler Space Telescope first discovered it during its K2 extension . In 2023, astronomers studied it with the Hubble Space Telescope. They detected hints of water vapour and described it as an ocean world. “This is the first time we’re ever seeing something like this.” Eshan Raul, University of Wisconsin – Madison However, the JWST results show that the atmosphere is almost completely comprised of water vapour. The results are in new research published in The Astrophysical Journal Letters titled “ JWST/NIRISS Reveals the Water-rich “Steam World” Atmosphere of GJ 9827 d. ” The lead author is Ca

Learning More About Supernovae Through Stardust

Most of the diverse elements in the Universe come from supernovae. We are, quite literally, made of the dust of those long-dead stars and other astrophysical processes. But the details of how it all comes about are something astronomers strive to understand. How do the various isotopes produced by supernovae drive the evolution of planetary systems? Of the various types of supernovae, which play the largest role in creating the elemental abundances we see today? One way astronomers can study these questions is to look at presolar grains. These are dust grains formed long before the formation of the Sun. Some of them were cast out of older systems as a star fired up its nuclear furnace and cleared its system of dust. Others formed from the remnants of supernovae and stellar collisions. Regardless of its origin, each presolar grain has a unique isotopic fingerprint that tells us its story. For decades, we could only study presolar grains found in meteorites, but missions such as Stardu